10.04.20 ws3080_RFM63_0.2.c 1

1 /*

Prozessor: ATMEGA 168 e-Fuse 01lh; h-Fuse DFh; 1-Fuse E7h; lock 3Fh. externer Quarz

Version 0.0 1/20 pkr

Version mit RFM63

Version 0.2:

Alle 48s werden die Daten vom Temperatursensor (usw.) Ubertragen. Jedes zweite Datenpaket wird
doppelt Ubertragen im Abstand von 31lms. Diese beiden Datenpakete werden ausgelesen und auf Gleichheit
Uberprift. Wenn sie gleich sind, dann werden die Daten Ubernommen.

7 WDT 411, 643, 756

8 391, 414, 655, 701 Interrupt sperren 6.4.*/

Ok, WN

10 #define F_CPU 16000000UL

12 #include <stdlib.h>

13 #include <avr/wdt.h>

14 #include <avr/io.h>

15 #include <string.h>

16 #include <avr/interrupt.h>

17 #include <avr/eeprom.h>

18 #include <util/delay.h>

19 #include "Bibliothek/SPI1.c"

20 #include "Bibliothek/i2c.h"

21 #include "Bibliothek/uhr.h"

22 #include "Bibliothek/ws3080 sensor 0.2.h"
23 #include "Bibliothek/BME Berechnung.c"
24 #include "Bibliothek/uartl.c"

30 //LEDs

31 #define LED Empfang 0 //PCO
32 #define LED Fehler 1 //PB1
33 #define LED Batterie 2 //PD2

35 #define Daten_Eingang 0 //Dateneingang Empfang (PBO)
36 #define Datum ein (PINB & (1l<<Daten Eingang))

38 #define LED Empfang an PORTC |= (1<<LED Empfang)

39 #define LED Empfang aus PORTC &= ~(1l<<LED Empfang)
40 #define LED Fehler an PORTB |= (1<<LED Fehler)

41 #define LED Fehler aus PORTB &= ~(1<<LED Fehler)

42 #define LED Batterie an PORTD |= (1<<LED Batterie)
43 #define LED Batterie aus PORTD &= ~(1<<LED Batterie)

45 #define Anzahl Byte DS 27 //Anzahl der Byts pro Datensatz im EEPROM

46 #define Adresse EEPROM OxA2 //Schreiben 1. Block; 2.Block: 0xA2+8; zum Lesen 1 addieren

47 #define DS Anzahl Block (uintl6 t) ((65536/Anzahl Byte DS)-1) //Anzahl der Datensatze -1 pro Block
im EEPROM

49 #define Timerl aus TCCR1B &= ~(1<<(CS12)
50 #define Timer2 an TCCR2B |= ((1<<(CS22) | (1<<CS21) | (1<<(CS20)) //Vorteiler = 1024
51 #define Timer2 aus TCCR2B &= ~((1<<CS22) | (1<<CS21) | (1<<(CS20))

54 //void Lesen letzten DS EEPROM(uint8 t Datensatz[Anzahl Byte DS]);

56 //Globale Variable im SRAM

57 volatile uint8_t Daten_roh[15]; //Empfangsdaten vom Sensor

58 uint8 t Fehler = 0; //Fehlerausgabe im Teil ws3080 sensor

59 char Platz[] = {"1234567"};

60 uint8 t fehl = 1; //Fehlerausgabe beim Dateneinlesen der Rohdaten

61 uint8 t k, n;

62 volatile uint8 t Anzahl Flanken; //wird zum Empfang der Kopfdaten benutzt (8*0xFF)
63 volatile uint8 t Paket Zaehler = 0;

64 volatile uint8 t wechsel=0; //Variable fur den Zellenwechsel beim EEPROM
65 uint8 t Datum Zeit k[] = {29, 2, 20, 9, 10, 5}; //T,M,J,h,m,s als Zahl

66 volatile uintl6 t DS Nr = 0;

67 volatile uint8 t Speicherintervall = 10; //in Minuten

68 volatile uint8 t Stop = 0;

69 uint8 t Datensatz_eingelesen; //Merker, um Doppelspeicherung zu vermeiden
70 uint8 t Anforderung; //Anforderung von der seriellen Schnittstelle

71 uint8 t test[3];

72 uint8 t Fehl[3];

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63 0.2.c

10.04.20

ws3080 RFM63 0.2.c 2

73
74
75
76

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

struct Datenausgabe{

+

intl6 t Templ; //aussen WS3080
intl6 t Temp2; //aussen extra
intle t Temp3; //innen

uint8 t Feuchtel; //Aussen

uint8 t Feuchte2; //Aussen extra

uint8 t Feuchte3; //Innen

uintl6 t Helligkeit;

uint8 t UV _I;

uintl6 t Druck;

uint8 t Regen;

uintl6 t Wind mittel;

uint8 t Wind Richtung;

uintl6 t Wind Boen;

uint8 t Batterie; // Vermutung obere Nibble Byte 7 WS3080
uint8 t Fragezeichen; //Byte 10 vom WS3080 immer 0x557

struct Datenausgabe Daten modifiziert;

union Ausgabe

struct Datenausgabe Daten mod;
uint8 t Daten ausgabe[sizeof (struct Datenausgabe)];

} DS _Ausgabe;

//Speicher im EEPROM

uint8 t ee Name Version[] EEMEM = {"WS3080 Auswertung Version 0.2 pkr 1/20"};

uintl6 t ee Regenmenge alt EEMEM = 0; //Speicher fir alte Regenmenge in 0,3mm/Digit

uint8 t ee Speicherintervall EEMEM = 10; //Speicherintervall in Minuten

uintl6 t ee Adresse[15] EEMEM = {0, ©0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //Datensatzspeicher
uint8 t ee wechsel = 0; //0 ... 14 fir Zelle des Feldes ee Adresse[]; damit die Zelle jedes Jahr
gewechselt wird.

const uintlé t Frequenz[] = {0x067D, 0x0764, 0x0816}; //868,4MHz

const uintl6 t RFM63 Config Tabelle[] =

{
0x0148, //00K Modulation, Spitzenwert erfassen

0x043F, //Schwelle *0,5dB, 0x60 ... 0x38 muss durch probieren festgelegt werden (Stdrungen,
Rauschen)
0x0D40,
OxOE04,
Ox0F20,
0x1004, //Bandbreite 157kHz Versatz: 100kHz
0x1258 //Synch Ausgang0x1B3C, //kein CLK aus
i

const uintl6 t RFM63 Rx = 0x0070;

void RFM63 Config()

{

uint8 t n;
for(n=0; n<3; n++)
{
Kommando senden(Frequenz[n]); //Frequenz einstellen
}
for(n=0; n<7; n++)
{
Kommando senden(RFM63 Config Tabelle[n]); //Konfiguration RFM66
}

Kommando senden(RFM63 Rx); //Empfang konfigurieren

145 uint8 t Mittelwertbildung(volatile uint8 t Daten roh[], uint8 t Ende)

file:///home/peter/Projekte/Wetterempfaenger_ WS3080/Version_0.2/ws3080_RFM63_0.2.c

10.04.20

ws3080 RFM63 0.2.c 3

146 {

147 //formt Rohdaten vom Sensor in lesbare Werte und bildet Maximum Wind Boen bzw.
148 //Mittelwerte bei den Temperaturen und der Feuchte zwischen den Abrufen.

149 //Der Ruckgabewert zeigt den fehlerhaften Sensor an. Bei 0 kein Fehler.

150 //Eine 1 in Ende stoppt die Datensammlung, und das Programm wird verlassen
151 //mit der Fehlermeldung.

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

uintle t Wind Boen;

static int32 t Temp_ 1 Summe = 0;
static uint8 t Anzahl 1 = 0;
static int32 t Temp 2 Summe = 0;
static uint8 t Anzahl 2 = 0;
static int32 t Temp 3 Summe = 0;
static uint8 t Anzahl 3 = 0;

static uintl6 t Feuchte 1 Summe = 0;
static uintl6e t Feuchte 2 Summe = 0;
static uintl6 t Feuchte 3 Summe = 0;
static uint32 t Helligkeit Summe = 0;
static uint8 t Anzahl Helligkeit = 0;
static uint8 t UV_I Summe = 0;

static uintl6 t Wind Boen_ alt = 0;

static uintl6_t Regenmenge = 0;
uintl6_t Regenmenge neu = 0;
uintl6e t Regenmenge alt;

// static uint8 t letzter DS[Anzahl Byte DS]J;

uint8 t Fehler = 0;

175 //Druck ermitteln

176
177

Daten modifiziert.Druck = (uintl16 t)(Druck kompensiert 32Bit(Druck roh())/10); //vom BME Sensor

178 //Temperatur 1

179

Temp 1 Summe += (intl6 t)(((((intl6 _t)Daten roh[0] & OxOF) << 8) + (intl6_t)Daten roh[1])) - 400;

180 //Feuchte 1 ermitteln

181
182
183
184

Feuchte 1 Summe += Daten _roh[2];
Anzahl 1++;

185 //Regen ermitteln. Es wird nur die Regenmenge vom Mittelwertzeitraum bestimmt in ©,3mm Schritten

186
187
188
189
190

191
192
193
194
195
196

197
198
199
200
201
202

203
204
205
206
207
208
209
210

211
212
213
214
215
216

Regenmenge neu (((uintl6 t)Daten _roh[5] << 8) + (uintl6 t)Daten roh[6]);
Regenmenge alt = eeprom read word(&ee Regenmenge alt);
if (Regenmenge neu > Regenmenge alt)

if ((Regenmenge alt < 1) || (Regenmenge neu > Regenmenge alt + 10)) Regenmenge = 0; //EEPROM
leer oder Fehler in 1min > 3mm; ev. Regenmenge neu<Regenmenge alt

else Regenmenge += Regenmenge neu - Regenmenge alt;

//Regenmenge _alt = Regenmenge neu;

eeprom write word(&ee Regenmenge alt, Regenmenge neu);

}

if (Regenmenge neu < Regenmenge alt) eeprom write word(&ee Regenmenge alt, Regenmenge neu);
//Fehler im EEPROM

//Windwerte ermitteln
Daten modifiziert.Wind mittel = ((uintl6_t)Daten_roh[3]*10 / 3); //in 0,1 m/s

Wind Boen = ((uintl6 t)Daten roh[4]*10 / 3); //in 0,1m/s
if ((Wind Boen == 0) & (Daten modifiziert.Wind mittel == 0)) //bei Windstille wird sonst der
letzte max_wert genommen.

{

Daten modifiziert.Wind Boen = 0;
Wind Boen alt = 0;
}

if (Wind Boen > Wind Boen alt) //Maximalwert ermitteln: Boen

if (!(Wind Boen > 4*Daten modifiziert.Wind mittel)) // bei Bden > 4*mittlere
Windgeschwindigkeit Wert verwerfen
{

Daten modifiziert.Wind Boen = Wind Boen;

Wind Boen alt = Wind Boen;

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

10.04.20

ws3080 RFM63 0.2.c

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

Daten modifiziert.Wind Richtung = (Daten_roh[7] & 0xOF); //Richtung

//Temperatur 2 ermitteln (frei fir den zweiten Aussensensor)
Temp_2 Summe += 0;

//Feuchte 2 ermitteln

Feuchte 2 Summe += 0;

Anzahl 2++;

//Temperatur 3 ermitteln Innentemperatur

Temp 3 Summe += (intl6 t)(Temperatur kompensiert(Temperatur roh())/10); //vom BME280 Sensor
//Feuchte 3 ermitteln

Feuchte 3 Summe += (uint8 t)(Feuchte_ kompensiert(Feuchtigkeit roh())>>10);

Anzahl 3++;

if(Daten _roh[10] == 0x55) //ist wahrscheinlich immer 0x55

{

//Helligkeit ermitteln

Helligkeit Summe += (((uint32 t)Daten roh[11l] << 16) + ((uint32 t)Daten roh[12] << 8) +
(uint32 t)Daten roh[13]) / 1000; //Helligkeit in ©,1kLux

//UV Index ermitteln

UV_I Summe += Daten roh[9] & OxOF;

Anzahl Helligkeit ++;

//Batterie ?
Daten modifiziert.Batterie = (Daten roh[7] & 0xFO); //Batterie ?

//Fragezeichen Byte 10 vom Lichtsensor
Daten modifiziert.Fragezeichen = Daten roh[10]; //keine Ahnung woflr das ist (0x55)

if (Ende)

//Mittelwerte bilden und Daten in Ausgabe struct Datenausgabe schreiben
//Wind mittel wird auch im Sensor 15min? gemittelt

Fehler = 0; //Fehlermarker rilicksetzen

Daten modifiziert.Templ = (intl6 t) (Temp 1 Summe / Anzahl 1);

Daten modifiziert.Feuchtel = (uint8 t) (Feuchte 1 Summe / Anzahl 1);
Daten modifiziert.Temp2 = (intl6 t) (Temp_2 Summe / Anzahl 2);

Daten modifiziert.Feuchte2 = (uint8 t) (Feuchte 2 Summe / Anzahl 2);
Daten modifiziert.Temp3 = (intl6 t) (Temp 3 Summe / Anzahl 3);

Daten modifiziert.Feuchte3 = (uint8 t) (Feuchte 3 Summe / Anzahl 3);
Temp 1 Summe = 0;

Feuchte 1 Summe = 0;

Anzahl 1 = 0,

Temp 2 Summe = 0;

Feuchte 2 Summe = 0;

Anzahl 2 = 0;

Temp 3 Summe = 0;

Feuchte 3 Summe = 0;

Anzahl 3 = 0;

//Regensensor
Daten modifiziert.Regen =(uint8 t) Regenmenge;
Regenmenge = 0;

//Helligkeitssensor

Daten modifiziert.Helligkeit = (uintl6 t) (Helligkeit Summe / Anzahl Helligkeit);
Daten modifiziert.UV I = UV I Summe / Anzahl Helligkeit;

UV_I Summe = 0O;

Helligkeit Summe = 0;

Anzahl Helligkeit = 0;

//Windsensor

Wind Boen alt = 0;
}
return(Fehler) ;

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 5

291

292

293 uintl6 t Daten in EEPROM schreiben(uintl6 t DS Nr)

294 {

295 //Daten ins EEPROM schreiben. Der Rickgabewert ist der nachste Datensatz

296 //Aufbau des Datensatzes:

297 //
T,M,J,H,Min,T1 L,T1 H,T2 L,T2 H,T3 H,T3 L,F1,F2,F3,H L,H H,UV I,Druck L,Druck H,R,Wm L,Wm H,WR,W
b L,Wb H,B ,?

298 //0,1,2,3,4 ,5 ,0 7 ,8 ,9 ,10 ,11,12,13,14 ,15 ,16 ,17 , 18 ,19,20 ,21
22,23 ,24 ,25,26

299 uint8 t n;

300 uint8 t Datensatz[Anzahl Byte DS];

301 uintl6 t Adr_intern;

302 uint32 t Adr;

303 uint8 t Adresse EEPROM intern;

304

305

306 //Signalisiert die Speicherung eines Datensatzes

307 LED Empfang an;

308 _delay ms(1000);

309 LED Empfang aus;

310

311 Lesen Datum Uhrzeit kurz(Datum Zeit k);

312

313 //J3ahrlich wird die Adresse im EEPROM gewechselt, um Ausfalle vorzubeugen.

314 //reicht fir 15 Jahre

315 if ((Datum Zeit k[2] - 20) != wechsel)

316 {

317 wechsel = Datum Zeit K[2] - 20;

318 eeprom write byte(&ee wechsel, wechsel);

319 }

320

321 //Tag, Monat, Jahr, Std und Minute in die ersten 5 Byte schreiben

322 for (n=0;n<5;n++)

323 {

324 Datensatz[n] = Datum Zeit k[n];

325 }

326

327 DS Ausgabe.Daten mod = Daten modifiziert; //in union Uberfihren

328 for (n=0; n<sizeof (struct Datenausgabe); n++)

329 {

330 Datensatz[n+5] = DS Ausgabe.Daten_ausgabe[n];

331 }

332

333 if (DS _Nr <= DS Anzahl Block)

334 {

335 Adresse EEPROM intern = Adresse EEPROM;

336 Adr = DS_Nr * Anzahl Byte DS;

337 }

338 else

339 {

340 Adr = (DS Nr + 2) * Anzahl Byte DS; //Adresse fir den zweiten Block im EEPROM

341 Adresse EEPROM intern = Adresse EEPROM | 0x08; //Wenn Adresse > 0x0000FFFF, dann EEPROM Bit 3

setzen

342 }

343

344 for (n=0;n<Anzahl Byte DS;n++)

345 {

346 Adr_intern = (uintl6 _t) (Adr & Ox0000FFFF);

347 // Schreibe Byts ab Adresse(Adresse EEPROM intern, Adr intern, Datensatz, Anzahl Byte DS, 2);

348 Schreibe Byte an Adresse(Adresse EEPROM intern,Adr intern,Datensatz[n],2);

349 _delay ms(10);

350 Adr++;

351 }

352 //letzte DS Adresse ins EEPROM schreiben. Adresse im EEPROM wird jedes Jahr geandert

353 //Bei 10 min reicht es fir ca. 2 Jahre (100000 mal schreiben)

354 eeprom write word(&ee Adresse[wechsel], DS Nr + 1);

355

356 return (DS Nr + 1);

357 }

358 /*

359 void Lesen letzten DS EEPROM(uint8 t Datensatz[Anzahl Byte DS])

360 {

361 uint8 t Adresse EEPROM intern;

file:///home/peter/Projekte/Wetterempfaenger_ WS3080/Version_0.2/ws3080_RFM63_0.2.c

10.04.20

ws3080 RFM63 0.2.c 6

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

}

{

}

{

uintlé _t Adr_intern;
uint32 t z;

z = (DS_Nr-1) * Anzahl Byte DS; //Berechnung der Speicheradresse

if ((DS_Nr-1) > DS Anzahl Block) //2. Block wird beschrieben Adresse > OXFFFF

{
z += 2 * Anzahl Byte DS;
Adresse EEPROM intern = Adresse EEPROM | 0x08;
}
else
{
Adresse EEPROM intern = Adresse EEPROM;
}

Adr_intern = (uintl6 t) (z & OxG000FFFF);
Lese Byts_ab_Adresse(Adresse _EEPROM_intern, Adr_intern, Datensatz, Anzahl Byte DS, 2);

*/
void Lesen aus EEPROM(uintl6 t DS Nr, uintl6 t Anzahl)

//liest von der Datensatznummer ab, Anzahl Datensatze und sendet sie lUber die serielle
Schnittstelle.

uint8 t Datensatz[Anzahl Byte DS] =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,0};
uint8 t Adresse EEPROM intern;

uintle t m, Adr_intern;

uint8 t n;

uint32 t z;

cli();
for (m=DS_Nr;m<DS _Nr+Anzahl;m++)
{

z = m * Anzahl Byte DS; //Berechnung der Speicheradresse

if (m > DS_Anzahl Block) //2. Block wird beschrieben Adresse > OxFFFF

{
z += 2 * Anzahl Byte DS;
Adresse EEPROM intern = Adresse EEPROM | 0x08;
}
else
{
Adresse EEPROM intern = Adresse EEPROM;
}

Adr_intern = (uintl6 t) (z & OxO000FFFF);

Lese Byts ab Adresse(Adresse EEPROM intern, Adr_intern, Datensatz, Anzahl Byte DS, 2);
//DS ausgeben

for (n=0;n<Anzahl Byte DS;n++)

UART Sende Zeichen(Datensatz[n]);
}

// wdt reset(); //Die Datenlibertragung kann langer als 1s dauern.
sei();

}

return;

void Daten lesen()

uintlé t Anzahl;

//Anzahl der vorhandenen Datensatze Uber serielle Schnittstelle senden
UART Sende Zeichen((uint8 t) (DS _Nr & 0x00FF)); //L Byte zuerst
UART Sende Zeichen((uint8 t) ((DS Nr & OxFF00)>>8));

//Anzahl der zu sendenden Datensatze empfangen

Anzahl = (UART Empfange Zeichen() & Ox00FF) <<8; //H Byte

Anzahl += UART Empfange Zeichen() & Ox00FF; //L Byte

while (UART Empfange Zeichen() != UART_KEINE DATEN); //Puffer leeren

if (Anzahl > DS Nr) Anzahl = DS Nr; //Wenn Anforderung > vorhanden auf vorhandene DS reduzieren

Lesen_aus EEPROM(0O, Anzahl);

file:///home/peter/Projekte/Wetterempfaenger_ WS3080/Version_0.2/ws3080_RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 7

435 return;

436 }

437

438

439 void Uhr_stellen()

440 {

441 //Lese 12Byte von der seriellen Schnittstelle jjmmttHHMMSS

442 //zum Stellen der Uhr

443 char Datum Uhrzeit Ascci[12];

444 uint8 t n;

445

446 UART Sende Zeichen(Anforderung); //mul gemacht werden, damit der Rechner hier wartet bevor er
sendet.

447 _delay ms(10); //bis 12 Zeichen geladen sind.

448

449 for (n=0;n<12;n++)

450 {

451 Datum Uhrzeit Ascci[n] =(uint8 t) (UART Empfange Zeichen() & 0x00FF);

452 }

453 for (n=0;n<12;n++)

454 {

455 UART Sende Zeichen(Datum Uhrzeit Ascci[n]);

456 }

457

458 Stellen Datum Uhrzeit kurz(Datum Uhrzeit Ascci);

459 //Signalisierung, dal Uhr gestellt wurde

460 LED Batterie an;

461 _delay ms(1000);

462 LED Batterie aus;

463

464 return;

465 }

466

467 void Letzten DS auf O(uintl6 t letzter DS)

468 {

469 //UP liest den letzten Datensatz und speichert ihn auf DS Nr 0

470 uint8 t Datensatz[Anzahl Byte DS];

471 uint8 t Adresse EEPROM intern;

472 uintl6 t Adr;

473 uint32_t z;

474

475 z = letzter DS * Anzahl Byte DS;

476

477 if (letzter DS > DS Anzahl Block)

478 {

479 z += 2 * Anzahl Byte DS;

480 Adresse EEPROM intern = Adresse EEPROM | 0x08;

481 }

482 else

483 {

484 Adresse EEPROM intern = Adresse EEPROM;

485 }

486

487 Adr = (uintl6 t) (z & OxOO000FFFF);

488 Lese Byts ab Adresse(Adresse EEPROM intern, Adr, Datensatz, Anzahl Byte DS, 2);

489

490 Adr = 0; //Schreibe Datensatz ab Adresse 0

491 Schreibe Byts ab Adresse(Adresse EEPROM intern, Adr, Datensatz, Anzahl Byte DS, 2);

492

493 DS Nr = 1; //Globale DS Nr

494 eeprom write word(&ee Adresse[wechsel], DS Nr); //Datensatznummer = 1 speichern

495

496 return;

497

498 }

499

500 void Timer0 ini()

501 {

502 //Timer fiir die Uberschreitung der Wartezeit Eingangssignal (3ms)

503 TIMSKO |= (1<<OCIEGA); //Interrupt fir Vergleich mit Register A

504 TCCROA |= (1<<WGMO1); //CTC Modus

505 TCCROB |= (1<<(CS02); //Teiler 256

506 OCROA = 187; //Fir 3ms bei Vorteiler 256 und 16MHz

507 TCNTO = 0; //Anfang Timerzahler

508

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 8

509 }

510

511 void Timerl ini()

512 {

513 //Timer fir die Selektierung ob zwei Datensatze empfangen werden.
514 TIMSK1 |= (1<<OCIE1A);

515 TCCR1B |= (1<<(CS12); // | (1<<WGM12); //Vorteiler = 256; verkirzter Zahlumfang
516 OCR1A = 12500; //200ms

517 TCNT1 = 0;

518 }

519

520

521 void Timer2 ini()

522 {

523 //Timer fir die Uberschreitung des Kopfsignals 8%*1,5ms
524 TIMSK2 |= (1<<OCIE2A); //Vergleich mit Register A

525 TCCR2A |= (1<<WGM21); //CTC Funktion

526 OCR2A = 200; //12,8ms

527 TCNT2 = 0; //Zahler auf Null setzen

528 // TCCR2B |= (1<<(CS22) | (1<<(CS21) | (1<<(CS20); //Vorteiler = 1024
529

530 }

531

532 void Port_interrupt()

533 {

534 PCMSKO |= (1<<PCINTO); //PIN BO als Interrupt benutzen
535 PCICR |= (1<<PCIEO); //Interrupt freigeben

536 }

537

538

539 ISR (PCINTO vect)

540 {

541 //Timer2 starten und die Dauer der Kennung prifen zwischen 11 und 12,8ms
542

543 Timer2 an;

544 Anzahl Flanken++;

545 if ((Anzahl Flanken >= 17)) //nach der Kennung Daten lesen
546 {

547

548 PCICR &= ~(1<<PCIEOQ); //Interrupt abschalten

549 Timer2 aus; //Timer2 anhalten

550

551 if(TCNT2 < 156) //kleiner als 1lms Kopfdaten: Fehler
552 {

553 //Timer2_aus;

554 TCNT2 = 0;

555 Anzahl Flanken = 0;

556 _delay ms(20); //warten bis Stdorung vorbei ist
557 }

558 else

559 {

560 fehl = Daten_einlesen(Daten_roh);

561

562 TCNT2 = 0; //Zahler auf Null setzen

563 Anzahl Flanken = 0;

564 cli();

565 PCICR |= (1<<PCIEO);

566 sei();

567 }

568 }

569

570 }

571

572 ISR (TIMER2 COMPA vect)

573 {

574 //Timer fir die Zeit der Kopfdaten OxFF (11...13ms)

575 Timer2 aus;

576 TCNT2 = 0;

577 Anzahl Flanken = 0;

578 }

579

580 ISR (TIMER1 COMPA vect)

581 {

582 //Timer fir ricksetzen des Paketzahlers, wenn nur ein Paket (200ms)
583 Paket Zaehler = 0;

file:///home/peter/Projekte/Wetterempfaenger_ WS3080/Version_0.2/ws3080_RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 9

584 Timerl aus;

585 TCNT1 = 0; //Zahler auf Null setzen

586 }

587

588 ISR (TIMERO COMPA vect)

589 {

590 //Timer flir fehlerhafte Daten (3ms)

591 Fehler = 0x01;

592 }

593

594

595 void WD _Timer init()

596 {

597 WDTCSR |= (1<<WDCE) | (1<<WDE); //Reset Betrieb
598 WDTCSR |= (1<<WDP1l) | (1<<WDP2); //1s

599

600 // wdt enable(WDTO 1S);

601

602 }

603

604 void Ports init()

605 {

606 DDRB &= ~(l<<Daten Eingang); //Empfangereingang
607 DDRB |= (1<<LED Fehler);

608 //DDRC &= ~(1<<MISO); //Eingang Daten

609 //I2C Bus in i2c.h definiert

610 DDRC |= (1<<MOSI) | (1<<SCK) | (1<<NSS); //MOSI, SCK und NSS als Ausgang
611 DDRC |= (l<<LED_Empfang); //LED als Ausgang
612 DDRD |= (1<<LED Batterie); //Led Batterie Ausgang
613 return;

614 }

615

616

617 void Startwerte setzen()

618 //Setzt Startwerte

619 {

620 wechsel = eeprom_read byte(&ee wechsel);

621 DS Nr = eeprom read word(&ee Adresse[wechsel]);

622 Speicherintervall = eeprom read byte(&ee Speicherintervall);
623 return;

624 }

625

626

627 int main(void)

628 {

629

630 Ports init();

631 Port interrupt();

632 _delay ms(100);

633 RFM63 Config();

634 Timer@ ini();

635 Timerl ini();

636 Timer2 ini();

637 Timer2 an;

638 Startwerte setzen();

639

640 BME 280 init();

641 _delay ms(20);

642 if (BME 280 test() == 0) BME 280 Parameter lesen();

643

644 uart init(BR Teiler(F_CPU,Baudrate)); //serielle Schnittstelle initialisieren Parameter in
uart.c

645

646 // WD Timer init();

647

648 sei();

649

650 while(1)

651 {

652

653 if(fehl == 0)

654 {

655 cli();

656 BME 280 init(); //BME Messung starten

657

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 10

658 Lesen Datum Uhrzeit kurz(Datum Zeit k);

659 //Minuten = Datum Zeit k[4]; Sekunde = Datum Zeit K[5];

660

661 if ((Datum Zeit k[4] % Speicherintervall) == 0) // || (((Datum_Zeit k[4] %

Speicherintervall) == 1) && (Datum Zeit K[5] < 3))) //62 s Abfragebereitschaft
662 {

663 Stop = 1;

664 }

665 else

666 {

667 Stop = 0;

668 Datensatz eingelesen = 0; //Nach einer Minute Rilcksetzen

669 }

670

671 if(Datensatz _eingelesen > 0) Stop = 0; //innerhalb der Minute wurde der Datensatz schon
eingelesen

672

673 Fehler = Mittelwertbildung(Daten roh,Stop);

674

675 //Die letzten 300 DS des Speichers werden belegt. Batterie LED an

676 if (DS _Nr > ((DS_Anzahl Block * 2) - 300))

677 {

678 LED Batterie an;

679 }

680 else

681 {

682 LED Batterie aus;

683 }

684

685 if (Stop)

686 {

687 //Daten ins EEPROM schreiben

688

689 DS Nr = Daten_in EEPROM schreiben(DS Nr);

690

691 Stop = 0;

692 Datensatz _eingelesen = 1;

693 LED Batterie an;

694 _delay ms(200);

695 LED Batterie aus;

696 // Fehler anzeigen(Fehler);

697 }

698

699 fehl = 4; //Fehlerspeicher 16schen

700

701 sei();

702

703 LED Empfang an;

704 _delay ms(500);

705 LED Empfang aus;

706 }

707

708 else if(fehl == 1) //Fehler beim Datenlesen

709 {

710 LED Fehler an;

711 _delay ms(200);

712 LED Fehler_aus;

713 fehl = 4; //Fehlerspeicher 16schen

714 }

715

716 else

717 {

718 //Auswahlzeichen empfangen

719 Anforderung = (uint8 t) (UART Empfange Zeichen() & Ox00FF);

720

721

722 if (Anforderung == '1') //Daten lesen

723

724 Daten lesen();

725 }

726

727 else if(Anforderung == 's')

728 {

729 Uhr stellen();

730 }

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

10.04.20 ws3080 RFM63 0.2.c 11

731

732 else if (Anforderung == 'e') //Speicherintervall einstellen
733 {

734 _delay us(160); //Wartezeit fir das nachste Zeichen

735

736 Speicherintervall = (uint8 t) (UART Empfange Zeichen() & 0Ox00FF);
737

738 eeprom write byte(&ee Speicherintervall, Speicherintervall);
739

740 UART Sende Zeichen(Speicherintervall);

741 Anforderung = 0;

742

743 LED Batterie an;

744 _delay ms(500);

745 LED Batterie aus;

746 }

747

748 else if (Anforderung == 'z') //Speicherzahler ricksetzen
749 {

750 Letzten DS auf O(DS Nr-1);

751

752 LED Batterie an;

753 _delay ms(500);

754 LED Batterie aus;

755 }

756

757 Anforderung = 0;

758

759 cli();

760 PCICR |= (1<<PCIEOQ);

761 sei();

762 // wdt reset();

763 }

764

765 }

766 return(0);

767 }

768

file:///home/peter/Projekte/Wetterempfaenger WS3080/Version_0.2/ws3080 RFM63_0.2.c

